2025.06.13 (금)

  • 구름많음동두천 17.6℃
  • 맑음강릉 20.3℃
  • 구름많음서울 18.2℃
  • 맑음대전 18.5℃
  • 맑음대구 19.0℃
  • 맑음울산 20.0℃
  • 맑음광주 18.4℃
  • 맑음부산 19.1℃
  • 맑음고창 18.4℃
  • 맑음제주 21.3℃
  • 구름많음강화 15.3℃
  • 구름조금보은 17.3℃
  • 맑음금산 18.1℃
  • 맑음강진군 18.7℃
  • 구름조금경주시 20.7℃
  • 맑음거제 19.7℃
기상청 제공

회계

[현재가치②] 미래가치와 현재가치의 개념

'현재시점의 1원의 가치 > 미래시점의 1원의 가치'이므로 시점을 일치시켜 비교해야




현재의 1억 원과 1년 후의 1억 원은 가치가 다르다. 즉 가치 면에서 ‘현재의 1억 원 > 1년 후의 1억 원’이 성립된다. 이는  사람들이 생명의 유한함, 실물투자기회, 구매력하락, 그리고 미래의 위험 등으로 인해 현재시점의 금액을 미래시점보다 더 선호하게 되고, 따라서 이 선호는 가치의 증가로 이어지기 때문이다. 

그러므로 두 시점의 가치를 일치시키기 위해서는 현재의 금액에 절대금액을 가산하여야 가치가 동일 시 된다. 이를테면 현재시점의 1억 원과 1년 후의 1.2억 원이 가치 면에서 일치할 수 있다. 여기서 원금에 가산된 2,000만원은 현재시점의 선호에 대한 가치를  절대 금액으로 표시한 것이다. 

다시 말해 사람들이 현재시점의 금액을 더 선호하기 때문에, 현재의 1억 원을 포기하고 빌려준다면  1년 후에 돌려받게 되는 금액에는  원금 1억 원에 + α, 즉 선호의 포기에 대한 대가까지 포함된다. 

즉 현재의 돈을 빌려주게 되는 경우, 현재시점에 자신이 이 금액을 소비하거나 투자하였을 경우  획득하게 될 만족(효용)이나 투자수익을 포기하게 된다. 따라서  대여자는 포기한 수익, 즉 기회비용을 요구하게 된다.  그리고 이 기회비용을 이자라는 명목으로 보상받는 것이다.  

이러한 이유로 발생시점이 다른 금액들을 비교할 때는 동일시점의 금액으로 일치시킨 후 비교하여야 한다. 현재시점의 금액 1억 원과 미래시점의 금액 1.2억 원이라는  절대금액으로 서로 비교하여서는 안 되고, 두 시점의 금액을 단일시점으로 일치시킨 후 비교해야 한다. 즉 두 시점의 금액을 미래시점으로 일치시키거나, 혹은 현재시점으로 일치시킨 후 금액을 비교하여야한다. 

여기서 미래가치(Future Value)와 현재가치(Present Value)라는 회계와 재무관리에서의 핵심 개념이 등장하게 된다. 


◆ 미래가치 





#1. 대부씨가 현재 1억 원을 차입씨에게 빌려주고 1년 후에 이 원금을 돌려받는다. 이자는 연 10%이다. 대부씨는 1년 후에 원금과 이자로 얼마를 돌려받아야할까?

우선 문제를 단순화하여 현재 1원을 빌려준다고 가정하자. 이 경우 이자는 1× 0.1=0.1이다. 따라서 1년 후 원리금은 ‘원금1 + 이자 1× 0.1’이다. 이를 정리하면 1(1+0.1)이 된다. 

원금이 1억 원이므로 1년 후 상환되는 원리금은 ‘1억 원 × 1(1+0.1) = 1억1백만 원이 된다. 이 금액이 1억 원의 1년 후 미래가치금액이 된다. 



#2. 대부씨가 현재 1억 원을 차입씨에게 빌려주고 3년 후에 이 원금을 돌려받는다. 이자는 연 10%이다. 대부씨는 3년 후에 원금과 이자로 얼마를 돌려받아야할까?

첫 번째 질문처럼 1원을 투자한다고 가정하자. 연이율 10%라면 1원의 1년 후 미래가치는  1(1+0.1)이된다. 그런데 이 금액은 1년 후(t=1)의 원금이 된다. 즉 이자가 원금이 된 것이다. 

그러므로 2년 후의 원리금은 ‘원금  1(1+0.1)과 이자  1(1+0.1)×0.1’이 된다. 따라서 이를 정리하면  1(1+0.1)(1+0.1)= 1(1+0.1)²가 된다. 이처럼 이자에 이자(interest on interest)가 가산되는 것을 복리라고 한다. 

다시 2년 후의 미래가치는 1(1+0.1)²이고, 이것이 2년 후(t=2)의 원금이 된다. 

따라서 3년 후의 원리금(t=3)은 2년 후의 원금 1(1+0.1)²에 이자 1(1+0.1)²0.1이 가산되어,  1(1+0.1)²(1+0.1) = 1(1+0.1)³이 된다. 그러므로 현재 1원을 연 10%로 3년간 투자하면 1.331을 상환 받게 된다. 

이번에는 1억 원을 투자하게 되면, 1억 원 × (1.030310/1원) = 133,100,000을 회수하게 된다. 

1원의 미래가치는 미래가치표를 찾아보면 확인할 수 있다. 즉 이자율과 투자기간을 적용하면  미래가치금액을 확인하게 된다. 예를 들어 n=3, r=10%로  미래가치표를 확인하면,  미래가치금액은 1.331이 된다. 


◆ 현재가치 



#3. 예금씨는 1년 후 목돈 1억 원을 마련하고자 한다. 연이율이 10%라면 은행에 현재 얼마를 예금해야 할까? 

위의 질문은  미래가치금액과 일치하는 현재시점의 금액, 즉 현재가치는 얼마인가라는 문제이다. 

이는 미래가치금액 계산과정을 이용하여 계산할 수 있다. 현재금액을 1원이라고 하면 미래가치금액은 1(1+0.1)= 1.1이다. 현재금액을 계산하기위해서, 미래가치금액 1.1을 이용하면, 현재가치는 1.1/(1+0.1)이 된다. 

그러므로  현재가치는 ‘미래가치금액/(1+이자율)’이 된다. 

이를 기초로 위의 질문을 계산해 보자. 위의 질문을 단순화 한다면, 미래 1원을 마련하기 위해서 예금해야할 현재금액은 ‘1/(1+0.1)’이 된다. 그리고 미래 1억 원을 마련하기 위한 현재시점의  예금액은 1원의 현재가치 1/(1+0.1)에 1억 원을 곱하면 된다. 



#4. 예금씨는 3년 후 목돈 1억 원을 마련하고자 한다. 연이율이 10%라면 은행에 현재 얼마를 예금해야 할까? 

이 질문도 미래가치계수를 이용한다. 현재 1원의 3년 후 미래가치는 1(1+0.1)³=1.331이 된다. 그러므로 3년 후 미래가치금액의 현재시점 금액, 즉 현재가치는 ‘1.331 ÷ (1+0.1)³’이 된다. 

그러므로 연이율 10%, 투자기간 3년의 경우, 3년 후 1원을 마련하기 위해서 현재시점에 투자해야 할 금액은 ‘1÷ (1+0.1)³=0.75131’이 된다. 그리고  미래금액이 1억 원이라면, ‘1÷ (1+0.1)³’에 1억 원을 곱하면 된다. 

1원의 현재가치(PVIF)도 현재가치표를 이용하여 계산된다. 즉 표에서  n=3, r=10%를  찾게 되면, 1원의 현재가치는 0.75131을 확인하게 된다. 
(계속: 1원 빌려주고 이자 지불)






[디비시아 지수의 가중치] 디비시아 방식의 경제이론적 정합성: 생산탄력성과 비용점유율의 일치 원리 디비시아 방식은 경제이론과 높은 정합성을 지닌 방식으로 평가받고 있습니다. 그 근거는 6월4일자 「MFP와 디비시아 지수」기사에서도 간략히 언급된 바 있습니다. “MFP계산에서 디비시아 방식은 ‘요소비용점유율= 한계생산성의 기여율’이라는 경제이론과 일치합니다. 이는 MFP계산에서 디비시아 방식이 생산함수의 이론구조와 정합성을 유지하면서, 각 투입요소의 기여도를 현실적으로 반영할 수 있다는 점에서 의미가 있습니다.” 디비시아지수는 각요소의 비용점유율을 가중치로 삼아 총투입로그변화율을 계산합니다. 주목할 점은, 이 가중치로 사용되는 ‘요소의 비용점유율’이 곧 ‘요소의 생산탄력성’과 일치한다는 사실입니다. 이는 가중치가 요소의 생산에 대한 실질기여도를 반영하고 있음을 의미합니다. 이러한 ‘요소의 비용점유율=요소의 생산탄력성’이라는 등식이 성립하는 것은 생산자가 이윤 극대화를 목표로 하는 합리적 의사결정을 내렸기 때문입니다. 다시 말해 비용점유율을 가중치로 삼는 디비시아 방식의 구조에는 생산자의 합리적 선택(Rational Choice)이 내재되어 있는 겁니다. 따라서 디비시아 지수는 단순한 통계적 평균이 아니라, 생산자 이론과 일관된 경제이론적 기반위에 구축된 분